Quantum crystallography is a branch of crystallography that investigates crystalline materials within the framework of quantum mechanics, with analysis and representation, in position or in momentum space, of quantities like the wavefunction, the electron charge and spin density, the density matrices and all properties related to them (like electric potential, electric or magnetic moments, energy densities, electron localization function, one electron potential, etc.). The research in this field includes experimental work (radiation scattering and/or absorption-emission) and theoretical work (quantum chemical calculations in periodic systems, approximated models for the experimental observations). The work carried out in our group consists in measuring X-ray diffraction on crystals at low temperature and use quantum crystallographic approaches for the modelling (multipolar expansion of the electron charge density, wavefunction modelling with X-ray restrained techniques).
From the obtained models, chemical bonding analysis is carried out, assisted by purely theoretical simulations on the crystalline systems investigated. Complementary information is obtained from measurements of the dielectric constant, conductibility, magnetic susceptibility and other electronic properties of the materials investigated. The purpose of this research is extracting valuable information to unveil the mechanisms that govern the build up of a material functionality
Principal investigators: Prof. Piero Macchi, Prof. Alessandro Genoni
Post-docs: Dr. Sounak Sarkar
PhD student(s): Yidian Wang
Main collaborators: Dr. Michelle Ernst (Univ. Zurich, Switzerland); Dr. Anna Krawczuk (Univ. Göttingen, Germany); Dr. Stefano Racioppi (SUNY at Buffalo, US); Dr Rebecca Scatena (Diamond Light Source, UK); Marianne Kerleaux (Univ. Laval, Canada).
Review articles and books
Macchi P. (Author) De Gruyter, in the press.
Quantum Crystallography: Foundamentals and Applications.
Macchi P. (Author) Spring Briefs in Crystallography, Springer, 2022.
Quantum Crystallography: Expectations vs. Reality. (link).
Gatti, C.; Macchi P. (Editors) Springer 2012
Modern Charge density Analysis (link).
Macchi, P. IUCr newsletter, 2021, ,29, 14 (link).
Quantum mechanics and crystallography: inextricably linked in quantum crystallography.
Genoni, A.; Macchi P.(*) Crystals, 2020, 10, 476 (pdf).
Quantum Crystallography in the Last Decade: Developments and Outlooks
Macchi, P. Cryst. Rev., 2020, ,26, 209-268 (pdf).
The connubium between crystallography and quantum mechanics.
A few electronics reprints are available at (e-reprint).
Genoni, A.; Bucinsky, L.; Claiser, N.; Contreras-Garcia, J.; Dittrich, B.; Dominiak, P. M.; Espinosa, E.;Gatti, C.; Giannozzi, P.; Gillet, J.-M.; Jayatilaka, D.; Macchi, P.; Madsen, A. Ø.; Massa, L. J.; Matta, C. F.; Merz, K. M.; Nakashima, P. N. H.; Ott, H.; Ryde, U.; Schwarz, K.; Sierka, M.; Grabowsky, S.Chemistry, Eur. J., 2018, 24, 10881-10905 (pdf).
Quantum Crystallography: Current Developments and Future Perspectives
Macchi, P.(*); Gillet, J.-M.; Taulelle, F.; Campo, J.; Claiser, N.; Lecomte, C. IUCrJ, 2015, 2, 441-451 (pdf).
Modelling the experimental electron density: only the synergy of various approaches can tackle the new challenges
Macchi, P.(*) Cryst. Rev. 2013, 19, 58-109 (pdf).
Modern charge density studies: the entanglement of experiment and theory
Recent scientific articles and book chapters
Poreba, T.; Macchi, P.; Ernst, M. Nat. Comm., 2022, 13, 5288.(pdf)
Pitfalls in the location of guest molecules in metal-organic frameworks
Wieduwilt, E. V; Macetti, G.; Scatena, R.; Macchi, P.; Genoni A. Crystals, 2021, 11, 207.(pdf)
Extending Libraries of Extremely Localized Molecular Orbitals to Metal Organic Frameworks: A Preliminary Investigation
Curley, S. P. M. ; Scatena, R.; Williams, R. C.; Goddard, P. A.; Macchi, P.; Hicken, T. J.; Lancaster, T.; Xiao, F.; Blundell, D. J.; Zapf, V.; Eckert,J. C.; Krenkel,E. H.; Villa, J. A.; Rhodehouse, M. L.; Manson, J. L., Phys. Rev. Mat.v, 2021, 5, 034401.(pdf)
Magnetic ground-state of the one-dimensional ferromagnetic chain compounds M(NCS)2(thiourea)2; M = Ni, Co.
Riccardi, N.; Ernst, M.; Macchi, P.; Wesolowski, T. Acta Cryst., 2020, A76, 571-579. (pdf)
Embedding-theory-based simulations using experimental electron densities for the environment
Ernst, M.; Genoni, A.; Macchi, P. (*), J. Mol. Struct., 2020 , 1209, 127975. (pdf)
Analysis of crystal field effects and interactions using X-ray restrained ELMOs
Scatena, R.; Guntern, Y.; Macchi, P. (*), J. Am. Chem. Soc., 2019 , 141, 9382–9390. (pdf)
Electron Density and Dielectric Properties of highly porous MOFs: binding and mobility of guest molecules in Cu3(BTC)2 and Zn3(BTC)2
Huddart, B. M.; Brambleby, J.; Lancaster, T.; Goddard, P. A.; Xiao, F.; Blundell, S. J.; Pratt, F. L; Singleton, J.; Macchi, P.; Scatena, R.; Bartoni, A. M.; Manson, J. L. Phys.Chem.Chem.Phys., 2019, 21, 1014-1018 (pdf)
Magnetic order and enhanced exchange in the quasi-one-dimensional molecule-based antiferromagnet Cu(NO3)2(pyz)3
Ernst, M.; Dos Santos, L. H. R.; Krawczuk, A.; Macchi, P.(*) in Understanding Intermolecular Interactions in Crystals, edited by Dr Deepak Chopra, 2019, 211-242.
Towards a generalized database of atomic polarizabilities
Fugel, M.; Jayatilaka, D.; Hupf, E.; Overgaard, J.; Hathwar, V. H.; Macchi, P.; Turner, M. J.; Howard, J. A. K.; Dolomanov, O.; Puschmann, H.; Iversen, B.B.; Bürgi, H.B; Grabowsky, S. IUCrJ, 2018, 5, 32-44 (pdf)
Probing accuracy and precision of Hirshfeld Atom Refinement with HARt interfaced to Olex2
Macchi, P.(*); Ragaini, F.; Casati, N.; Krawczuk, A.; Sironi, A.; J. Comput. Chem., 2018, 39, 581-586. (pdf)
Experimental and theoretical electron density of intermediates in Palladium-Phenanthroline Catalyzed Carbonylation of Amines and Reductive Carbonylation of Nitroarenes
Racioppi, S.; Della Pergola, R.; Colombo, V.; Sironi, A.; Macchi, P.(*) J. Phys. Chem.A, 2018,122, 5004–5015. (pdf)
Electron Density Analysis of Metal Clusters with Semi-Interstitial Main Group Atoms. Chemical Bonding in [Co6X(CO)16]– Species
Hesterberg, R.; Macchi, P.; Hulliger, J. Crys. Growth Des. 2018, 18, 7460–7469 (pdf)
Polarization, inner and outer field and surface charge compensation of a molecular crystal
Dos Santos, L.; Lanza, A.; Barton, A.; Brambleby, J.; Blackmore, W.; Goddard, P.; Xiao, F.; Williams, R.; Lancaster, T.; Pratt, F.; Blundell, S.; Singleton, J.; Manson, J.; Macchi, P.(*) J. Am. Chem. Soc. 2016, 138, 2280–2291 (pdf)
Experimental and Theoretical Electron Density Analysis of Copper Pyrazine Nitrate Quasi-Low-Dimensional Quantum Magnets